
Una lunga recensione. 
- Peter Pesic is primarily a historian of science, having to his credit various scholarly 
writings on Francis Bacon and Gottfried Leibnitz. The star of his latest book is Abel, 
who gets titl billing, but Galois is its costar, and numerous mathematical giants play 
significant parts in the development of its theme, among them Pythagoras, Euclid, al-
Khwarizmi, Descartes, Newton, Gauss, Lagrange and Cauchy. But more than being 
about any person, this book is about a mathematical idea, the idea of unsolvability. 
Pesic mused (p.3): How can a search for solutions yield the unsolvable? . . . I studied 
modern texts, but the key remained elusive. Absorbed in advanced studies, experts 
may cease to wonder about the elementary. They might not notice the kind of basic 
insight I was seeking. To find it, I needed to return to the sources. So Pesic retraced 
the history of this idea, and Abel’s Proof is his retelling of it: our understanding of the 
theme and appreciation of its significance grow as the historical developments unfold 
in context. More specifically, the book is about the idea that polynomial equations in 
general cannot be solved exactly in radicals. The credit for proving this goes to Niels 
Henrik Abel, who showed in 1824 that fifth degree polynomials in general do not 
have solutions in radicals. Pesic asks (p.3): What is it about the fifth degree that 
causes the problem? . . . Most of all, what is the significance of this breakdown, if one 
can use such a word?  Pesic finds the origin of his theme in ancient Greece, with the 
invention of mathematical proof. Central to the Pythagorean world view was a notion 
of number as essentially integral, and length as essentially the ratio of whole multiples 
of units (“rational”), yet a proof was found that the side and diagonal of a square are 
incommensurable. Pesic says (p.10) this was deeply disturbing, for it threatened the 
entire project of explaining nature in terms of number alone. The philosophical crisis 
was only truly resolved many centuries later by the eventual acceptance of a wider, 
less intuitive notion of number in which the rational and the irrational stand side by 
side and have equal status. 
A parallel thread in the evolving concept of number was the slow acceptance of 
negative numbers, called absurd numbers by some seventeenth century 
mathematicians. Even Descartes described them as false or less than nothing, and 
Laplace (1795) said the rule that the product of two negative numbers is a positive 
number presents some difficulties. The notion of a number line seems to have 
originated with Girard (1629), who accepted negative roots for equations, with the 
explanation that the negative in geometry indicates a retrogression, where the positive 
is an advance. 
 
From origins in commerce and bookkeeping, the gradual emergence of algebra as a 
means of symbolic calculation was an essential mathematical development. Such 
symbol manipulation had to overcome the prejudice that it was mere sophistry and 
needed geometrical demonstration of its claims before one could confidently accept 
them. Pesic argues that Kepler and Galileo held opinions of this sort, and to some 
extent even Newton was inclined to such an attitude. But with algebra came the 
notion that mathematical problems could be formulated as equations to be solved. 
Thus the quest for exact solutions of polynomial equations gradually assumed the 
significance of a search for the solution of all mathematical problems, or as Vi‘ete 
(1595) put it, the motivation was to leave no problem unsolved. 
Solution of particular quadratic equations by completing the square goes back to the 
Babylonians, though a general algebraic formulation, admitting not only negative 
roots but also complex roots, is a modern development. Pesic’s account does not 
explicitly anchor the general solution of quadratic equations in history, but he does 



give a detailed historical treatment of the solution of cubic and quartic equations, 
wryly remarking (p.32) that contest over credit for the solution of the cubic became 
the first example of a sordid modern genre: the scientific priority fight. He gives 
helpful expositions of Cardano’s method (pp.36–37) of solving cubic equations by 
completing the cube, and Ferrari’s method (pp.38–39) of solving quartic equations by 
solving a cubic resolvent, then completing the square and solving two quadratics. 
Failed attempts to adapt these methods to solve the quintic began to give hints that 
such methods could not possibly succeed. In particular, the cubic has a quadratic 
resolvent and the quartic has a cubic resolvent, but the resolvent of the quintic is not 
of smaller degree – in fact, its degree is 6. Lagrange concluded that new methods 
were needed to solve the quintic, but Gauss (1801) wrote that there is little doubt that 
this problem does not so much defy modern methods of analysis as that it proposes 
the impossible. At the same time Gauss gave the first proof that every polynomial 
equation has a root in the complex number plane, and hence a polynomial of degree n 
has n roots in the complex numbers. Thus the real question became: Is it true that the 
complex roots of a quintic cannot in general be expressed in terms of the coefficients 
by applying any finite sequence of additions, subtractions, multiplications, divisions 
and extractions of roots? 
It seems that no contemporary mathematician produced such a clear and explicit 
formulation of the problem, but essentially that question motivated Ruffini (1799) to 
give a proof of the unsolvability of the quintic using Lagrange’s work on 
permutations of the roots of a polynomial. Cauchy wrote that Ruffini’s argument 
proves completely the unsolvability of the general equation of degree greater than 4, 
and went on (1813–15) to generalize some of his results onpermutations. However, 
Lagrange contended that there were shortfalls in Ruffini’s argument. 
It fell to Abel (1824) to write the first proof which stood up to critical examination, 
and made clear the essential difference between equations of low degree and those of 
higher degree. Nonetheless, Pesic suggests (p.89) that the unsolvability theorem could 
justly be called the Abel–Ruffini Theorem because Ruffini’s ideas contributed to 
Abel’s argument via Cauchy’s 1815 theorem (nicely expounded by Pesic in Appendix 
C). Pesic gives a commentary on Abel’s proof, and includes an annotated translation 
of the original paper in Appendix A. The main ideas are (1) a characterization of the 
form of any solution in radicals; (2) proof that any such expression is a rational 
function of the roots (assumed without proof by Ruffini); (3) proof that if a rational 
function of five arguments takes fewer than five values when its arguments are 
permuted, then it takes at most two values; (4) showing that assuming the general 
quintic has a solution in radicals leads to the contradiction that two equal rational 
functions of the five rootstake different numbers of values when the roots are 
permuted. By contradiction, it follows that the roots of the general quintic are not 
expressible in radicals. In modern terminology, there are algebraic numbers that are 
not derivable from the integers by any finite sequence of additions, subtractions, 
multiplications, divisions and extractions of roots. Pesic (p.146) favours Stewart’ 
name ultraradical numbers for them. 
Abel subsequently went on to investigate the conditions under which a polynomial 
equation can be solved in radicals, and found there are particular equations of all 
degrees, that admit such solutions. Abel found that all the roots of such an equation 
are rational functions of each other, and if f(a) and g(a) are two such functions of a 
root a, then f(g(a)) = g(f(a)) so the two functions commute. This insight links 
solvability in radicals with commutativity of rational functions, and eventually led to 
the Jordan–H¨older Theorem (1889) on solvability in radicals. 



Abel died of tuberculosis in 1829 at age 26, and the work of his last years was 
published posthumously. Unaware of that later work, and before his own death in 
1832 at age 20, Galois famously generalized Abel’s proof of unsolvability by great 
insights into the ideas about permutations of roots and their effects on the value of 
rational functions of those roots. Indeed, Galois was the first person to introduce the 
abstract notion of a group. 
Pesic concludes his account after Abel and Galois by rather lightly tracing some of the 
development of ideas about commutativity and noncommutativity, and notes briefly 
(p.146) that following Abel, Jacobi, Hermite, Kronecker and Brioschi, in 1870 Jordan 
proved that elliptic modular functions suffice to solve all polynomial equations. The 
reader is left with little clarity on this sequel to the story, but with a very satisfactory 
understanding of Abel’s proof.  The overall development in Abel’s Proof is uneven 
and there are sporadic minor errors in the mathematical explanations, but these 
weaknesses are more than balanced by its excellent topically-organized notes. I give it 
three stars. 
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